Schedule algebra

Here is another look at the outcome table. First I complete the left column:

condition on x on y replace \([a, b]\) with
\(x > b\)   \([a, b]\)
\(x = b\)   \([a, x-1] [x, y]\)
\(a < x < b\) \(y < b\) \([a, x-1] [x, y] [y+1,b]\)
\(a < x < b\) \(y \ge b\) \([a, x-1] [x, y]\)
\(a = x\) \(y < b\) \([x, y] [y+1, b]\)
\(a = x\) \(y \ge b\) \([x, y]\)
\(a > x\) \(y < a\) \([a, b]\)
\(a > x\) \(y = a\) \([x, y] [y+1, b]\)
\(a > x\) \(b > y > a\) \([x, y] [y+1, b]\)
\(a > x\) \(b \le y\) \([x, y]\)

Then I reorder by number of elements in the replacement:

condition on x on y replace \([a, b]\) with
\(x > b\)   \([a, b]\)
\(a = x\) \(y \ge b\) \([x, y]\)
\(a > x\) \(y < a\) \([a, b]\)
\(a > x\) \(b \le y\) \([x, y]\)
\(x = b\)   \([a, x-1] [x, y]\)
\(a < x < b\) \(y \ge b\) \([a, x-1] [x, y]\)
\(a = x\) \(y < b\) \([x, y] [y+1, b]\)
\(a > x\) \(y = a\) \([x, y] [y+1, b]\)
\(a > x\) \(b > y > a\) \([x, y] [y+1, b]\)
\(a < x < b\) \(y < b\) \([a, x-1] [x, y] [y+1,b]\)

Then I will do some computations on a piece of paper (not shown here) to derive a simplification.